clustering Package¶
clustering
Module¶
-
class
AdaptivePELE.clustering.clustering.
AltStructures
[source]¶ Bases:
object
Helper class, each cluster will have an instance of AltStructures that will maintain a priority queue (pq) of alternative structures to spawn from encoded as tuples (priority, PDB).
-
addStructure
(PDB, threshold, resname, resnum, resChain, contactThreshold, similarityEvaluator, trajPosition)[source]¶ Perform a subclustering, with sub-clusters of size threshold/2
- Parameters
PDB (
PDB
) – Structure to clusterthreshold (float) – Size of the cluster
resname (str) – String containing the three letter name of the ligand in the pdb
resnum (int) – Integer containing the residue number of the ligand in the pdb
resChain (str) – String containing the chain name of the ligand in the pdb
contactThreshold (float) – Distance at which to atoms are considered in contact
similarityEvaluator (
SimilarityEvaluator
) – Object that determinates the similarity between two structurestrajPosition (int, int, int) – Tuple of (epoch, trajectory, snapshot) that permit identifying the structure added
-
altSpawnSelection
(centerPair)[source]¶ Select an alternative PDB from the cluster center to spawn from
-
cleanPQ
()[source]¶ Ensure that the alternative structures priority queue has no more elements than the limit in order to ensure efficiency
-
-
class
AdaptivePELE.clustering.clustering.
CMClusteringEvaluator
(similarityEvaluator, symmetryEvaluator)[source]¶ Bases:
AdaptivePELE.clustering.clustering.ClusteringEvaluator
Helper object to carry out the RMSD clustering
- Parameters
similarityEvaluator (
CMSimilarityEvaluator
) – object that calculates the similarity between two contact mapssymmetryEvaluator (
SymmetryContactMapEvaluator
) – object to introduce the symmetry in the contacts maps
-
checkAttributes
(pdb, resname, resnum, resChain, contactThresholdDistance)[source]¶ Check wether all attributes are set for this iteration
- Parameters
pdb (
PDB
) – Structure to compareresname (str) – String containing the three letter name of the ligand in the pdb
resnum (int) – Integer containing the residue number of the ligand in the pdb
resChain (str) – String containing the chain name of the ligand in the pdb
contactThreshold (float) – Distance between two atoms to be considered in contact (default 8)
-
getInnerLimit
(cluster)[source]¶ Return the threshold of the cluster
- Parameters
cluster (
Cluster
) – Cluster to compare- Returns
float – Threshold of the cluster
-
isElement
(pdb, cluster, resname, resnum, resChain, contactThresholdDistance)[source]¶ Evaluate wether a conformation is a member of a cluster
- Parameters
pdb (
PDB
) – Structure to comparecluster (
Cluster
) – Cluster to compareresname (str) – String containing the three letter name of the ligand in the pdb
resnum (int) – Integer containing the residue number of the ligand in the pdb
resChain (str) – String containing the chain name of the ligand in the pdb
contactThreshold (float) – Distance between two atoms to be considered in contact (default 8)
- Returns
bool, float – Whether the structure belong to the cluster and the distance between them
-
limitMax
= {4: 0.2, 6: 0.8, 8: 2, 10: 4}¶
-
limitSlope
= {4: 60, 6: 15, 8: 6, 10: 3}¶
-
class
AdaptivePELE.clustering.clustering.
CMSimilarityEvaluator
(typeEvaluator)[source]¶ Bases:
object
Evaluate the similarity of two contactMaps by calculating the ratio of the number of differences over the average of elements in the contacts maps, their correlation or their Jaccard index, that is, the ratio between the intersection of the two contact maps and their union
-
isSimilarCluster
(contactMap, clusterContactMap, symContactMapEvaluator)[source]¶ Evaluate if two contactMaps are similar or not, return True if yes, False otherwise
- Parameters
contactMap (numpy.Array) – contactMap of the structure to compare
contactMap – contactMap of the structure to compare
symContactMapEvaluator (
SymmetryContactMapEvaluator
) – Contact Map symmetry evaluator object
- Returns
float – distance between contact maps
-
-
class
AdaptivePELE.clustering.clustering.
Cluster
(pdb, thresholdRadius=None, contactMap=None, contacts=None, metrics=None, metricCol=None, density=None, contactThreshold=8, altSelection=False, trajPosition=None)[source]¶ Bases:
object
A cluster contains a representative structure(pdb), the number of elements, its density, threshold, number of contacts, a contactMap(sometimes) and a metric
- Parameters
pdb (
PDB
) – Pdb of the representative structurethresholdRadius (float) – Threshold of the cluster
contactMap (numpy.Array) – The contact map of the ligand and the protein
contacts (float) – Ratio of the number of alpha carbons in contact with the ligand
metrics (numpy.Array) – Array of the metrics corresponding to the cluster
metricCol (int) – Column of the prefered metric
density (float) – Density of the cluster
contactThreshold (float) – Distance between two atoms to be considered in contact (default 8)
altSelection (bool) – Flag that controls wether to use the alternative structures (default 8)
trajPosition (int, int, int) – Tuple of (epoch, trajectory, snapshot) that permit identifying the structure added
-
addElement
(metrics)[source]¶ Add a new element to the cluster
- Parameters
metrics (numpy.Array) – Array of metrics of the new structure
-
getContacts
()[source]¶ Get the contacts ratio of the cluster
- Returns
float – contact ratio of the cluster
-
getMetric
()[source]¶ Get the value of the prefered metric if present, otherwise return None
- Returns
float – Value of the prefered metric
-
getMetricFromColumn
(numcol)[source]¶ Get the value of the metric in column numcol if present, otherwise return None
- Parameters
numcol (int) – Column of the desired metric
- Returns
float – Value of the prefered metric
-
printCluster
(verbose=False)[source]¶ Print cluster information
- Parameters
verbose (bool) – Flag to control the verbosity of the code (default is False)
-
class
AdaptivePELE.clustering.clustering.
Clustering
(resname='', resnum=0, resChain='', reportBaseFilename=None, columnOfReportFile=None, contactThresholdDistance=8, altSelection=False)[source]¶ Bases:
object
Base class for clustering methods, it defines a cluster method that contacts and accumulative inherit and use
- Parameters
resname (str) – String containing the three letter name of the ligand in the pdb
resnum (int) – Integer containing the residue number of the ligand in the pdb
resChain (str) – String containing the chain name of the ligand in the pdb
reportBaseFilename (str) – Name of the file that contains the metrics of the snapshots to cluster
columnOfReportFile (int) – Column of the report file that contain the metric of interest
contactThresholdDistance (float) – Distance at wich a ligand atom and a protein atom are considered in contact(default 8)
-
addSnapshotToCluster
(trajNum, snapshot, origCluster, snapshotNum, metrics=None, col=None, topology=None)[source]¶ Cluster a snapshot using the leader algorithm
- Parameters
trajNum (int) – Trajectory number
snapshot (str) – Snapshot to add
origCluster (int) – Cluster found in the previos snapshot
snapshotNum (int) – Number of snapshot in its trajectory
metrics (numpy.Array) – Array with the metrics of the snapshot
col (int) – Column of the desired metrics
topology (list) – Topology for non-pdb trajectories
- Returns
int – Cluster to which the snapshot belongs
-
cluster
(paths, ignoreFirstRow=False, topology=None, epoch=None, outputPathConstants=None)[source]¶ Cluster the snaptshots contained in the paths folder
- Parameters
paths (list) – List of folders with the snapshots
ignoreFirstRow (bool) – Flag wether to ignore the first snapshot of a trajectory
topology (
Topology
) – Topology object containing the set of topologies needed for the simulationepoch (int) – Epoch number
outputPathConstants (
OutputPathConstants
) – Contains outputPath-related constants
-
filterClustersAccordingToBox
(simulationRunnerParams)[source]¶ Filter the clusters to select only the ones whose representative structures will fit into the selected box
- Parameters
simulationRunnerParams (
SimulationParameters
) –SimulationParameters
Simulation parameters object- Returns list, list
– list of the filtered clusters, list of bools flagging wether the cluster is selected or not
-
filterClustersAccordingToMetric
(clustersFiltered, filter_value, condition, col_filter)[source]¶ Filter the clusters to select only the ones whose metric fits an specific criterion
- Parameters
clustersFiltered (list) – List of clusters to be processed
filter_value (float) – Value to use in the filtering
condition (str) – Whether to use > or < condition in the filtering
col_filter (int) – Column of the report to use
- Returns list, list
– list of the filtered clusters, list of bools flagging whether the cluster is selected or not
-
getCluster
(clusterNum)[source]¶ Get the cluster at index clusterNum
- Returns
Cluster
– Cluster at clusterNum
-
getClusterListForSpawning
()[source]¶ Return the clusters object to be used in the spawning
- Returns
Clusters
– Container object for the clusters
-
getMetricsFromColumn
(col)[source]¶ Get the metric of the clusters
- Parameters
col (int) – Column to select the metric
- Returns
np.array – Array containing the metric of the clusters
-
getOptimalMetric
(column=None, simulationType='min')[source]¶ Find the cluster with the best metric
- Parameters
column (int) – Column of the metric that defines the best cluster, if not specified, the cluster metric is chosen
simulationType (str) – Define optimal metric as the maximum or minimum, max or min
- Returns
int – Number of cluster with the optimal metric
-
setCol
(col)[source]¶ Set the column of the prefered column to col
- Parameters
col (int) – Column of the prefered column
-
updateRepeatParameters
(repeat, steps)[source]¶ Update parameters that should be extracted from the simulation object
- Parameters
repeat (bool) – Whether to avoid repeating steps (False for PELE, True for md)
steps (int) – steps per epoch
-
writeClusterMetric
(path, metricCol)[source]¶ Write the metric of each node in the conformation network in a tab-separated file
- Parameters
path (str) – Path where to write the network
metricCol (int) – Column of the metric of interest
-
writeConformationNodePopulation
(path)[source]¶ Write the population of each node in the conformation network in a tab-separated file
- Parameters
path (str) – Path where to write the network
-
writeOutput
(outputPath, degeneracy, outputObject, writeAll)[source]¶ Writes all the clustering information in outputPath
- Parameters
outputPath (str) – Folder that will contain all the clustering information
degeneracy (list) – Degeneracy of each cluster. It must be in the same order as in the self.clusters list
outputObject (str) – Output name for the pickle object
writeAll (bool) – Wether to write pdb files for all cluster in addition of the summary
-
class
AdaptivePELE.clustering.clustering.
ClusteringBuilder
[source]¶ Bases:
object
-
buildClustering
(clusteringBlock, reportBaseFilename=None, columnOfReportFile=None)[source]¶ Builder to create the appropiate clustering object
- Parameters
clusteringBlock (dict) – Parameters of the clustering process
reportBaseFilename (str) – Name of the file that contains the metrics of the snapshots to cluster
columnOfReportFile (int) – Column of the report file that contain the metric of interest
- Returns
Clustering
– Clustering object selected
-
-
class
AdaptivePELE.clustering.clustering.
Clusters
[source]¶ Bases:
object
-
addCluster
(cluster)[source]¶ Add a new cluster
- Parameters
cluster (
Cluster
) – Cluster object to insert
-
getCluster
(clusterNum)[source]¶ Get the cluster at position clusterNum
- Parameters
clusterNum (int) – Index of the cluster to retrieve
- Returns
Cluster
– Cluster at position clusterNum
-
getNumberClusters
()[source]¶ Get the number of clusters contained
- Returns
int – Number of clusters contained
-
-
class
AdaptivePELE.clustering.clustering.
ConformationNetwork
[source]¶ Bases:
object
Object that contains the conformation network, a network with clusters as nodes and edges representing trantions between clusters. The network is stored using the networkx package[1]
- 1
Networkx python package https://networkx.github.io
-
add_edge
(source, target)[source]¶ Add an edge to the network (wrapper for networkx method)
- Parameters
source (int) – Name of the source node
target (int) – Name of the target node
-
add_node
(node, **kwargs)[source]¶ Add a node to the network (wrapper for networkx method)
- Parameters
node (int) – Name of the node
kwargs (keyword arguments, optional) – Set or change attributes using key=value.
-
createPathwayToCluster
(clusterLeave)[source]¶ Retrace the FDT from a specific cluster to the root where it was discovered
- Parameters
clusterLeave (int) – End point of the pathway to reconstruct
- Returns
list – List of snapshots conforming a pathway
-
class
AdaptivePELE.clustering.clustering.
ContactMapAccumulativeClustering
(thresholdCalculator, similarityEvaluator, resname='', resnum=0, resChain='', reportBaseFilename=None, columnOfReportFile=None, contactThresholdDistance=8, symmetries=None, altSelection=False)[source]¶ Bases:
AdaptivePELE.clustering.clustering.Clustering
Cluster together all snapshots that have similar enough contactMaps. This similarity can be calculated with different methods (see similariyEvaluator documentation)
- Parameters
thresholdCalculator (
ThresholdCalculator
) – ThresholdCalculator object that calculate the threshold according to the contacts ratiosimilarityEvaluator (object) – object that calculates the similarity between two contact maps
resname (str) – String containing the three letter name of the ligand in the pdb
resnum (int) – Integer containing the residue number of the ligand in the pdb
resChain (str) – String containing the chain name of the ligand in the pdb
reportBaseFilename (str) – Name of the file that contains the metrics of the snapshots to cluster
columnOfReportFile (int) – Column of the report file that contain the metric of interest
contactThresholdDistance (float) – Distance at wich a ligand atom and a protein atom are considered in contact(default 8)
symmetries (list) – List of symmetric groups
altSelection (bool) – Flag that controls wether to use the alternative structures (default 8)
-
class
AdaptivePELE.clustering.clustering.
ContactsClustering
(thresholdCalculator, resname='', resnum=0, resChain='', reportBaseFilename=None, columnOfReportFile=None, contactThresholdDistance=8, symmetries=None, altSelection=False, useContacts=True)[source]¶ Bases:
AdaptivePELE.clustering.clustering.Clustering
Cluster together all snapshots that are closer to the cluster center than certain threshold. This threshold is assigned according to the ratio of number of contacts over the number of heavy atoms of the ligand
- Parameters
resname (str) – String containing the three letter name of the ligand in the pdb
resnum (int) – Integer containing the residue number of the ligand in the pdb
resChain (str) – String containing the chain name of the ligand in the pdb
thresholdCalculator (
ThresholdCalculator
) – ThresholdCalculator object that calculate the threshold according to the contacts ratioreportBaseFilename (str) – Name of the file that contains the metrics of the snapshots to cluster
columnOfReportFile (int) – Column of the report file that contain the metric of interest
contactThresholdDistance (float) – Distance at wich a ligand atom and a protein atom are considered in contact(default 8)
symmetries (list) – List of symmetric groups
altSelection (bool) – Flag that controls wether to use the alternative structures (default 8)
useContacts (bool) – Flag that controls whether to count the protein ligand contacts (useful mostly for ligand only simulations)
-
class
AdaptivePELE.clustering.clustering.
ContactsClusteringEvaluator
(RMSDCalculator_object)[source]¶ Bases:
AdaptivePELE.clustering.clustering.ClusteringEvaluator
Helper object to carry out the RMSD clustering
- Parameters
RMSDCalculator (
RMSDCalculator
) – object that calculates the RMSD between two conformations
-
checkAttributes
(pdb, resname, resnum, resChain, contactThresholdDistance)[source]¶ Check wether all attributes are set for this iteration
- Parameters
pdb (
PDB
) – Structure to compareresname (str) – String containing the three letter name of the ligand in the pdb
resnum (int) – Integer containing the residue number of the ligand in the pdb
resChain (str) – String containing the chain name of the ligand in the pdb
contactThreshold (float) – Distance between two atoms to be considered in contact (default 8)
-
getInnerLimit
(cluster)[source]¶ Return the threshold of the cluster
- Parameters
cluster (
Cluster
) – Cluster to compare- Returns
float – Threshold of the cluster
-
isElement
(pdb, cluster, resname, resnum, resChain, contactThresholdDistance)[source]¶ Evaluate wether a conformation is a member of a cluster
- Parameters
pdb (
PDB
) – Structure to comparecluster (
Cluster
) – Cluster to compareresname (str) – String containing the three letter name of the ligand in the pdb
resnum (int) – Integer containing the residue number of the ligand in the pdb
resChain (str) – String containing the chain name of the ligand in the pdb
contactThreshold (float) – Distance between two atoms to be considered in contact (default 8)
- Returns
bool, float – Whether the structure belong to the cluster and the distance between them
-
class
AdaptivePELE.clustering.clustering.
MSMClustering
(n_clusters, tica=False, resname='', resnum=0, resChain='', symmetries=None, atom_Ids='', writeCA=False, sidechains=False, tica_lagtime=10, tica_nICs=3, tica_kinetic_map=True, tica_commute_map=False)[source]¶ Bases:
AdaptivePELE.clustering.clustering.Clustering
Cluster the trajectories to estimate a Markov State Model (MSM)
Base class for clustering methods, it defines a cluster method that contacts and accumulative inherit and use
- Parameters
resname (str) – String containing the three letter name of the ligand in the pdb
resnum (int) – Integer containing the residue number of the ligand in the pdb
resChain (str) – String containing the chain name of the ligand in the pdb
reportBaseFilename (str) – Name of the file that contains the metrics of the snapshots to cluster
columnOfReportFile (int) – Column of the report file that contain the metric of interest
contactThresholdDistance (float) – Distance at wich a ligand atom and a protein atom are considered in contact(default 8)
-
cluster
(paths, topology=None, epoch=None, outputPathConstants=None)[source]¶ Cluster the snaptshots contained in the paths folder
- Parameters
paths (list) – List of folders with the snapshots
topology (
Topology
) – Topology object containing the set of topologies needed for the simulationepoch (int) – Epoch number
outputPathConstants (
OutputPathConstants
) – Contains outputPath-related constants
-
filterClustersAccordingToBox
(simulationRunnerParams)[source]¶ Filter the clusters to select only the ones whose representative structures will fit into the selected box
- Parameters
simulationRunnerParams (
SimulationParameters
) –SimulationParameters
Simulation parameters object- Returns list, list
– list of the filtered clusters, list of bools flagging wether the cluster is selected or not
-
filterClustersAccordingToMetric
(clustersFiltered, filter_value, condition, col_filter)[source]¶ Filter the clusters to select only the ones whose metric fits an specific criterion
- Parameters
clustersFiltered (list) – List of clusters to be processed
filter_value (float) – Value to use in the filtering
condition (str) – Whether to use > or < condition in the filtering
col_filter (int) – Column of the report to use
- Returns list, list
– list of the filtered clusters, list of bools flagging whether the cluster is selected or not
-
getClusterListForSpawning
()[source]¶ Return the clusters object to be used in the spawning
- Returns
Clusters
– Container object for the clusters
-
updateRepeatParameters
(repeat, steps)[source]¶ Update parameters that should be extracted from the simulation object
- Parameters
repeat (bool) – Whether to avoid repeating steps (False for PELE, True for md)
steps (int) – steps per epoch
-
writeOutput
(outputPath, degeneracy, outputObject, writeAll)[source]¶ Writes all the clustering information in outputPath
- Parameters
outputPath (str) – Folder that will contain all the clustering information
degeneracy (list) – Degeneracy of each cluster. It must be in the same order as in the self.clusters list
outputObject (str) – Output name for the pickle object
writeAll (bool) – Wether to write pdb files for all cluster in addition of the summary
-
class
AdaptivePELE.clustering.clustering.
NullClustering
[source]¶ Bases:
AdaptivePELE.clustering.clustering.Clustering
Don’t generate any clustering, works essentially as a placeholder for simulation when no clustering is desired
Base class for clustering methods, it defines a cluster method that contacts and accumulative inherit and use
- Parameters
resname (str) – String containing the three letter name of the ligand in the pdb
resnum (int) – Integer containing the residue number of the ligand in the pdb
resChain (str) – String containing the chain name of the ligand in the pdb
reportBaseFilename (str) – Name of the file that contains the metrics of the snapshots to cluster
columnOfReportFile (int) – Column of the report file that contain the metric of interest
contactThresholdDistance (float) – Distance at wich a ligand atom and a protein atom are considered in contact(default 8)
-
cluster
(paths, topology=None, epoch=None, outputPathConstants=None)[source]¶ Cluster the snaptshots contained in the paths folder
- Parameters
paths (list) – List of folders with the snapshots
topology (
Topology
) – Topology object containing the set of topologies needed for the simulationepoch (int) – Epoch number
outputPathConstants (
OutputPathConstants
) – Contains outputPath-related constants
-
writeOutput
(outputPath, degeneracy, outputObject, writeAll)[source]¶ Writes all the clustering information in outputPath
- Parameters
outputPath (str) – Folder that will contain all the clustering information
degeneracy (list) – Degeneracy of each cluster. It must be in the same order as in the self.clusters list
outputObject (str) – Output name for the pickle object
writeAll (bool) – Wether to write pdb files for all cluster in addition of the summary
-
class
AdaptivePELE.clustering.clustering.
RMSDOnlyClusteringEvaluator
(RMSDCalculator_object)[source]¶ Bases:
AdaptivePELE.clustering.clustering.ContactsClusteringEvaluator
Helper object to carry out the RMSD clustering
- Parameters
RMSDCalculator (
RMSDCalculator
) – object that calculates the RMSD between two conformations
-
checkAttributes
(pdb, resname, resnum, resChain, contactThresholdDistance)[source]¶ Check wether all attributes are set for this iteration
- Parameters
pdb (
PDB
) – Structure to compareresname (str) – String containing the three letter name of the ligand in the pdb
resnum (int) – Integer containing the residue number of the ligand in the pdb
resChain (str) – String containing the chain name of the ligand in the pdb
contactThreshold (float) – Distance between two atoms to be considered in contact (default 8)
-
class
AdaptivePELE.clustering.clustering.
SequentialLastSnapshotClustering
(resname='', resnum=0, resChain='', reportBaseFilename=None, columnOfReportFile=None, contactThresholdDistance=8, altSelection=False)[source]¶ Bases:
AdaptivePELE.clustering.clustering.Clustering
Assigned the last snapshot of the trajectory to a cluster. Only useful for PELE sequential runs
Base class for clustering methods, it defines a cluster method that contacts and accumulative inherit and use
- Parameters
resname (str) – String containing the three letter name of the ligand in the pdb
resnum (int) – Integer containing the residue number of the ligand in the pdb
resChain (str) – String containing the chain name of the ligand in the pdb
reportBaseFilename (str) – Name of the file that contains the metrics of the snapshots to cluster
columnOfReportFile (int) – Column of the report file that contain the metric of interest
contactThresholdDistance (float) – Distance at wich a ligand atom and a protein atom are considered in contact(default 8)
-
addSnapshotToCluster
(snapshot, metrics=None, col=None, topology=None)[source]¶ Cluster a snapshot using the leader algorithm
- Parameters
trajNum (int) – Trajectory number
snapshot (str) – Snapshot to add
metrics (numpy.Array) – Array with the metrics of the snapshot
col (int) – Column of the desired metrics
topology (list) – Topology for non-pdb trajectories
- Returns
int – Cluster to which the snapshot belongs
-
cluster
(paths, topology=None, epoch=None, outputPathConstants=None)[source]¶ Cluster the snaptshots contained in the paths folder
- Parameters
paths (list) – List of folders with the snapshots
topology (
Topology
) – Topology object containing the set of topologies needed for the simulationepoch (int) – Epoch number
outputPathConstants (
OutputPathConstants
) – Contains outputPath-related constants
-
AdaptivePELE.clustering.clustering.
filterRepeatedReports
(metrics, column=2)[source]¶ Filter the matrix containing the report information to avoid rejected steps
- Parameters
metrics (np.ndarray) – Contents of the report file
column (int) – Column to check for repeats
- Returns
np.ndarray – Contents of the report file filtered
-
AdaptivePELE.clustering.clustering.
getAllTrajectories
(paths)[source]¶ Find all the trajectory files in the paths specified
- Parameters
paths (str) – The path where to find the trajectories
- Returns
list – A list with the names of all the trajectories in paths
-
AdaptivePELE.clustering.clustering.
loadReportFile
(reportFile)[source]¶ Load a report file and filter it
- Parameters
reportFile (str) – Name of the report file
- Returns
np.ndarray – Contents of the report file
clusteringTypes
Module¶
thresholdcalculator
Module¶
-
class
AdaptivePELE.clustering.thresholdcalculator.
ThresholdCalculatorBuilder
[source]¶ Bases:
object
-
build
(clusteringBlock)[source]¶ Bulid the selecte thresholdCaulcualtor object
- Parameters
clusteringBlock (dict) – Parameters block corresponding to the threshold calculator
- Returns
ThresholdCalculator
– thresholdCalculator object selected
-
-
class
AdaptivePELE.clustering.thresholdcalculator.
ThresholdCalculatorConstant
(value=2)[source]¶ Bases:
AdaptivePELE.clustering.thresholdcalculator.ThresholdCalculator
-
class
AdaptivePELE.clustering.thresholdcalculator.
ThresholdCalculatorHeaviside
(conditions=None, values=None)[source]¶ Bases:
AdaptivePELE.clustering.thresholdcalculator.ThresholdCalculator